April 19, 2024

Balkan Travellers

Comprehensive up-to-date news coverage, aggregated from sources all over the world

Elementary Music: Interactive Periodic Table Converts He, Fe, Ca to Do, Re, Mi

Elementary Music: Interactive Periodic Table Converts He, Fe, Ca to Do, Re, Mi

Zoom in / Graduate student W. Walker Smith converted the visible light emitted by the objects into sound, creating unique and complex sounds for each. His personal favorites are helium and zinc.

W Walker Smith and Alan Parker

We’re all familiar with the elements of the periodic table, but have you ever wondered which element hydrogen or zinc, for example, might voice Likes? W. Walker Smith, now a graduate student at Indiana University, has combined his twin passions in chemistry and music to create what he calls a new audiovisual tool for communicating concepts of chemical spectroscopy.

Smith provided his data sonication The project — which essentially converts the visible spectra of the elements of the periodic table into sound — is at the American Chemical Society meeting this week in Indianapolis, Indiana. Smith even showed sound clips of some of the elements, along with “structures” incorporating larger particles, during his “Sound of Molecules” show.

As a college student, “I [earned] Dual degree in Music Composition and Chemistry, so I was always looking for a way to turn my chemistry research into music,” Smith said during a media briefing. “In the end, I stumbled across the visual spectra of the elements and was overwhelmed by how beautiful and different they all looked. I thought it would be really cool to turn those visual spectra, those beautiful images, into sound.”

What do the items look like?

Data sonication is not a new concept. For example, in 2018, scientists changed a NASA image of the Mars Opportunity rover in 5000y Sunrise on Mars in music. the particle physics data Used to discover the Higgs boson, the echoes of a black hole as it devoured a star, and magnetometer readings from the Voyager mission have also been turned into music. Several years ago, A.J[[” embedded=”” url=”” link=”” data-uri=”d71e3e53769b46aa75512f689b034f33″>project called LHCSound built a library of the “sounds” of a top quark jet and the Higgs boson, among others. The project hoped to develop sonification as a technique for analyzing the data from particle collisions so that physicists could “detect” subatomic particles by ear.

See also  Giant sturgeon: When do you see it?

Markus Buehler’s MIT lab famously mapped the molecular structure of proteins in spider silk threads onto musical theory to produce the “sound” of silk in hopes of establishing a radical new way to create designer proteins. The hierarchical elements of music composition (pitch, range, dynamics, tempo) are analogous to the hierarchical elements of protein structure. The lab even devised a way for humans to “enter” a 3D spider web and explore its structure both visually and aurally via a virtual reality setup. The ultimate aim is to learn to create similar synthetic spiderwebs and other structures that mimic the spider’s process.

Several years later, Buehler’s lab came up with an even more advanced system of making music out of a protein structure by computing the unique fingerprints of all the different secondary structures of proteins to make them audible via transposition—and then converting it back to create novel proteins never before seen in nature. The team also developed a free Android app called the Amino Acid Synthesizer so users could create their own protein “compositions” from the sounds of amino acids.

So Smith is in good company with his interactive periodic table project. All the elements release distinct wavelengths of light, depending on their electron energy levels, when stimulated by electricity or heat, and those chemical “fingerprints” make up the visible spectra at the heart of chemical spectroscopy. Smith translated those different frequencies of light into different pitches or musical notes using an instrument called the Light Soundinator 3000, scaling down those frequencies to be within the range of human hearing. He professed amazement at the sheer variety of sounds.

See also  Another teacher! Webb Space Telescope completes first multi-instrument alignment

“Red light has the lowest frequency in the visible range, so it sounds like a lower musical pitch than violet,” said Smith, demonstrating on a toy color-coded xylophone. “If we move from red all the way up to violet, the frequency of the light keeps getting higher, and so does the frequency of the sound. Violet is almost double the frequency of red light, so it actually sounds close to a musical octave.” And while simpler spectra like hydrogen and helium, which only have a few lines in their spectra, sound like “vaguely musical” chords, elements with more complex spectra consisting of thousands of lines are dense and noisy, often sounding like “a cheesy horror movie effect,” according to Smith.

His favorites: helium and zinc. “If you listen to the frequencies [of helium] One by one rather than all at once, Smith said, you can get an interesting scale pattern that I’ve used to compose several compositions, including “Helium Dance Party.” As for zinc, the first row of transition metals grating sounds very complex and dense. But Zinc, for whatever reason, despite its plethora of frequencies, sounds like an angelic singer singing vibrato. “

Smith is currently collaborating with the Wonder Lab Museum in Bloomington, Indiana, to develop a museum exhibit that enables visitors to interact with the periodic table, listen to lamentations, and create their own musical compositions from the various sounds. The main thing I want [convey] is that science and the arts are not, after all, so different. “Combining them can lead to new research questions, but also new ways to communicate and reach larger audiences.”

See also  Huge oceans have been discovered under the Earth's crust that contain more water than those on the surface